BestResponse
- class poisson_approval.BestResponse(tau, ranking)[source]
Best response for a given ordinal type of voter (abstract class).
The main objective of this class is to compute
utility_threshold
. The subclasses implement the best response in a specific voting rule.- Parameters
tau (TauVector) – A tau-vector.
ranking (str) – Voter’s ranking, e.g.
'abc'
.
- i, j, k
The first (resp. second, third) candidate in ranking. E.g.
a
.- Type
str
- ij, ik, jk
The ballots with two candidates. E.g.
ab
.- Type
str
- tau_i, tau_j, tau_k, tau_ij, tau_ik, tau_jk
The values of the tau-vector.
- Type
Number
- property ballot
This can be a valid ballot or
'utility-dependent'
.- Type
str
- property is_ordinal
Whether the best response is purely ordinal (or utility-dependent).
- Type
bool
- property justification
How the program computed the utility threshold.
- Type
str
- property pivot_ij_easy_or_tight
True if the pivot ij is easy or tight, False if it is difficult.
- Type
bool
- property pivot_ik_easy_or_tight
True if the pivot ik is easy or tight, False if it is difficult.
- Type
bool
- property pivot_ji_easy_or_tight
True if the pivot ji is easy or tight, False if it is difficult.
- Type
bool
- property pivot_jk_easy_or_tight
True if the pivot jk is easy or tight, False if it is difficult.
- Type
bool
- property pivot_ki_easy_or_tight
True if the pivot ki is easy or tight, False if it is difficult.
- Type
bool
- property pivot_kj_easy_or_tight
True if the pivot kj is easy or tight, False if it is difficult.
- Type
bool
- property pivot_strict_ij
The strict pivot ij.
- Type
- property pivot_strict_ik
The strict pivot ik.
- Type
- property pivot_strict_ji
The strict pivot ji.
- Type
- property pivot_strict_jk
The strict pivot jk.
- Type
- property pivot_strict_ki
The strict pivot ki.
- Type
- property pivot_strict_kj
The strict pivot kj.
- Type
- property pivot_tij
The personalized pivot between candidates i and j. This is just another notation for
pivot_tij_ijk
.- Type
- property pivot_tij_ijk
The first personalized pivot for voters ijk.
- Type
- property pivot_tij_ikj
The first personalized pivot for voters ikj.
- Type
- property pivot_tij_jik
The first personalized pivot for voters jik.
- Type
- property pivot_tij_jki
The first personalized pivot for voters jki.
- Type
- property pivot_tij_kij
The first personalized pivot for voters kij.
- Type
- property pivot_tij_kji
The first personalized pivot for voters kji.
- Type
- property pivot_tjk
The personalized pivot between candidates j and k. This is just another notation for
pivot_tjk_ijk
.- Type
- property pivot_tjk_ijk
The second personalized pivot for voters ijk.
- Type
- property pivot_tjk_ikj
The second personalized pivot for voters ikj.
- Type
- property pivot_tjk_jik
The second personalized pivot for voters jik.
- Type
- property pivot_tjk_jki
The second personalized pivot for voters jki.
- Type
- property pivot_tjk_kij
The second personalized pivot for voters kij.
- Type
- property pivot_tjk_kji
The second personalized pivot for voters kji.
- Type
- property pivot_weak_ij
The weak pivot ij.
- Type
- property pivot_weak_ik
The weak pivot ik.
- Type
- property pivot_weak_ji
The weak pivot ji.
- Type
- property pivot_weak_jk
The weak pivot jk.
- Type
- property pivot_weak_ki
The weak pivot ki.
- Type
- property pivot_weak_kj
The weak pivot kj.
- Type
- property results
Tuple (utility_threshold, justification). Cf.
utility_threshold
andjustification
.- Type
tuple
- property trio_1t_i
The first personalized trio (where candidate i has one vote less).
- Type
- property trio_1t_j
The first personalized trio (where candidate j has one vote less).
- Type
- property trio_1t_k
The first personalized trio (where candidate k has one vote less).
- Type
- property trio_2t
The second personalized trio. This is just another notation for
trio_2t_ij
.- Type
- property trio_2t_ij
The second personalized trio (where candidates i and j have one vote less).
- Type
- property trio_2t_ik
The second personalized trio (where candidates i and k have one vote less).
- Type
- property trio_2t_ji
The second personalized trio (where candidates j and i have one vote less).
- Type
- property trio_2t_jk
The second personalized trio (where candidates j and k have one vote less).
- Type
- property trio_2t_ki
The second personalized trio (where candidates k and i have one vote less).
- Type
- property trio_2t_kj
The second personalized trio (where candidates k and j have one vote less).
- Type
- property utility_threshold
The threshold value of the utility for the second candidate (where the optimal ballot changes).
- Type
Number