ternary_plot_convergence
- poisson_approval.ternary_plot_convergence(simplex_to_profile, scale, n_max_episodes, init='sincere', samples_per_point=1, perception_update_ratio=<function one_over_log_t_plus_one>, ballot_update_ratio=<function one_over_log_t_plus_one>, title='Convergence frequency', meth='fictitious_play', **kwargs)[source]
Shortcut: ternary plot for the convergence frequency in fictitious play / iterated voting.
Convergence frequency: out of samples_per_points trials, in which proportion of the cases did fictitious play or iterated voting converge within n_max_episodes iterations?
- Parameters
simplex_to_profile (SimplexToProfile) – This is responsible for generating the profiles.
scale (Number) – Scale of the plot (resolution).
n_max_episodes (int) – Maximum number of episodes for the fictitious play / iterated voting.
init (Strategy or TauVector or str) – Cf.
fictitious_play()
oriterated_voting()
.samples_per_point (int) – How many trials are made for each point drawn. Useful only when initialization is random.
perception_update_ratio (callable or Number) – Cf.
fictitious_play()
oriterated_voting()
.ballot_update_ratio (callable or Number) – Cf.
fictitious_play()
oriterated_voting()
.title (str) – Title of the plot.
meth (str) – The name of the method (
'fictitious_play'
or'iterated_voting'
).kwargs – Other keyword arguments are passed to the function
TernaryAxesSubplotPoisson.heatmap_intensity()
.
Examples
>>> simplex_to_profile = SimplexToProfile( ... ProfileNoisyDiscrete, ... left_type=('abc', 0.5, 0.01), right_type=('bac', 0.5, 0.01), top_type=('cab', 0.5, 0.01)) >>> figure, tax = ternary_plot_convergence(simplex_to_profile, scale=10, n_max_episodes=10)