RandProfileNoisyDiscreteUniform
- class poisson_approval.RandProfileNoisyDiscreteUniform(types, d_type_fixed_share=None, **kwargs)[source]
A random factory of noisy discrete profiles (
ProfileNoisyDiscrete
) following the uniform distribution.- Parameters
types (iterable) – These types will have a variable share. They can be noisy discrete types, e.g.
('abc', 0.9, 0.01)
, or discrete types, e.g.('abc', 0.9)
(in which case the argument noise must be given in the additional parameters), or weak orders, e.g.'a~b>c'
.d_type_fixed_share (dict, optional) – A dictionary. For each entry
type: fixed_share
, this type will have at least this fixed share. The total must be lower or equal to 1.kwargs – These additional arguments will be passed directly to
ProfileNoisyDiscrete
.
Examples
Basic usage:
>>> initialize_random_seeds() >>> rand_profile = RandProfileNoisyDiscreteUniform(types=[('abc', 0.9, 0.01), 'a~b>c']) >>> profile = rand_profile() >>> print(profile) <abc 0.9 ± 0.01: 0.5488135039273248, a~b>c: 0.45118649607267525> (Condorcet winner: a)
Or, equivalently:
>>> initialize_random_seeds() >>> rand_profile = RandProfileNoisyDiscreteUniform(types=[('abc', 0.9), 'a~b>c'], noise=0.01) >>> profile = rand_profile() >>> print(profile) <abc 0.9 ± 0.01: 0.5488135039273248, a~b>c: 0.45118649607267525> (Condorcet winner: a)
Using the optional parameters:
>>> rand_profile = RandProfileNoisyDiscreteUniform( ... types=[('abc', 0.9, 0.01), 'a~b>c'], d_type_fixed_share={'b>a~c': 0.5}, ... voting_rule=PLURALITY) >>> profile = rand_profile() >>> print(profile) <abc 0.9 ± 0.01: 0.35759468318620974, a~b>c: 0.14240531681379026, b>a~c: 0.5> (Condorcet winner: b) (Plurality)
For more examples, cf.
RandSimplexUniform
.