UtilPlot Module
- poisson_approval.utils.UtilPlot.plt_cdf(data, weights, n_samples, data_min=0, data_max=1, **kwargs)[source]
Plot a cumulative distribution function from Monte-Carlo experiments, with error area.
We assume that the values in data are obtained by a Monte-Carlo method on a random variable that is in [data_min, data_max]. For the confidence interval, cf.
plt_step_with_error()
.- Parameters
data (array-like) – Each encountered value.
weights (array-like) – The weight (probability) with which the value was encountered.
n_samples (int) – Number of samples used for Monte-Carlo.
data_min (Number) – Minimum possible value of data. Default: 0.
data_max (Number) – Maximum possible value of data. Default: 1.
kwargs – Other keyword arguments are passed to the function
step
of matplotlib.
Examples
>>> data = np.random.random(100) >>> weights = np.ones(100) / 100 >>> plt_cdf(data, weights, n_samples=100)
- poisson_approval.utils.UtilPlot.plt_plot_with_error(x, y, n_samples, **kwargs)[source]
Adaptation of
plt.plot
for Monte-Carlo experiments, with error area.We assume that y-values are obtained by a Monte-Carlo method on a random variable that is in [0, 1]. The margin of error is then bounded by the one of a repeated Bernouilli of parameter 0.5, which is itself approximated by a normal distribution. Hence the 95% confidence interval is approximately ± 1 / sqrt(n_samples). Note that this confidence interval is also valid (only overestimated) when the y-value is 0 or 1.
- Parameters
x (array-like) – The x-data.
y (array-like) – The y-data. Values must be in [0, 1].
n_samples (int) – Number of samples used for Monte-Carlo.
kwargs – Other keyword arguments are passed to the function
plot
of matplotlib.
Examples
>>> x = np.arange(0, 1, .1) >>> y = np.random.random(10) >>> plt_plot_with_error(x, y, n_samples=100)
- poisson_approval.utils.UtilPlot.plt_step_with_error(x, y, n_samples, **kwargs)[source]
Adaptation of
plt.step
for Monte-Carlo experiments, with error area.We assume that y-values are obtained by a Monte-Carlo method on a random variable that is in [0, 1]. The margin of error is then bounded by the one of a repeated Bernouilli of parameter 0.5, which is itself approximated by a normal distribution. Hence the 95% confidence interval is approximately ± 1 / sqrt(n_samples). Note that this confidence interval is also valid (only overestimated) when the y-value is 0 or 1.
- Parameters
x (array-like) – The x-data.
y (array-like) – The y-data. Values must be in [0, 1].
n_samples (int) – Number of samples used for Monte-Carlo.
kwargs – Other keyword arguments are passed to the function
step
of matplotlib.
Examples
>>> x = np.arange(0, 1, .1) >>> y = np.random.random(10) >>> plt_step_with_error(x, y, n_samples=100)