Dynamic Process: Robustness to the Belief Updating Parameter (C.2)
[1]:
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from poisson_approval import *
[2]:
N_SAMPLES = 10000
N_MAX_EPISODES = 1000
[3]:
update_ratios = {
'1': 1,
'0.5': 0.5,
'one_over_log_log_t_plus_fourteen': one_over_log_log_t_plus_fourteen,
'one_over_log_t_plus_one': one_over_log_t_plus_one,
'one_over_sqrt_t': one_over_sqrt_t,
'one_over_t': one_over_t,
}
[4]:
update_ratios_legend = {
'1': '1',
'0.5': '0.5',
'one_over_log_log_t_plus_fourteen': '1 / log(log(t + 14))',
'one_over_log_t_plus_one': '1 / log(t + 1)',
'one_over_sqrt_t': '1 / sqrt(t)',
'one_over_t': '1 / t',
}
[5]:
rand_profile = RandProfileHistogramUniform(n_bins=1)
Convergence Rate
[6]:
table_cv = pd.DataFrame()
table_cv.index.name = 'Belief updating parameter'
d_update_ratio_name_results = {}
for update_ratio_name, update_ratio in update_ratios.items():
results = monte_carlo_fictitious_play(
factory=rand_profile,
n_samples=N_SAMPLES,
n_max_episodes=N_MAX_EPISODES,
voting_rules=VOTING_RULES,
init='random_tau',
perception_update_ratio=update_ratio,
monte_carlo_settings=[
MCS_N_EPISODES,
MCS_CONVERGES,
],
file_save='sav/perception_update_%s.sav' % update_ratio_name,
)
d_update_ratio_name_results[update_ratio_name] = results
for voting_rule in VOTING_RULES:
table_cv.loc[update_ratio_name, voting_rule] = float(results[voting_rule]['mean_converges'])
table_cv
[6]:
Approval | Plurality | Anti-plurality | |
---|---|---|---|
Belief updating parameter | |||
1 | 0.9387 | 1.0 | 0.0 |
0.5 | 0.9503 | 1.0 | 0.0 |
one_over_log_log_t_plus_fourteen | 0.9483 | 1.0 | 0.0 |
one_over_log_t_plus_one | 0.9497 | 1.0 | 0.0 |
one_over_sqrt_t | 0.9468 | 1.0 | 0.0 |
one_over_t | 0.0000 | 0.0 | 0.0 |
Convergence Speed
[7]:
fig, ax = plt.subplots(figsize=(8, 4))
for update_ratio_name, update_ratio in update_ratios.items():
plt_cdf(
data=d_update_ratio_name_results[update_ratio_name]['Approval']['n_episodes'],
weights=np.ones(N_SAMPLES) / N_SAMPLES,
n_samples=N_SAMPLES,
data_min=0,
data_max=N_MAX_EPISODES,
label=update_ratios_legend[update_ratio_name]
)
plt.grid(True)
plt.legend()
plt.xlabel('Number of episodes')
plt.ylabel('Cumulative likelihood of occurrence')
plt.xlim(0, N_MAX_EPISODES)
plt.ylim(0, 1.05)
plt.savefig('img/fspeedCV_perception_update_ratio.png', dpi=600, bbox_inches="tight")