Dynamic Process: Robustness to the Belief Updating Parameter (with CW) (C.2)
[1]:
import pandas as pd
from poisson_approval import *
[2]:
N_SAMPLES = 10000
N_MAX_EPISODES = 1000
[3]:
update_ratios = {
'1': 1,
'0.5': 0.5,
'one_over_log_log_t_plus_fourteen': one_over_log_log_t_plus_fourteen,
'one_over_log_t_plus_one': one_over_log_t_plus_one,
'one_over_sqrt_t': one_over_sqrt_t,
'one_over_t': one_over_t,
}
[4]:
rand_profile = RandConditional(
RandProfileHistogramUniform(n_bins=1),
test=is_condorcet, n_trials_max=None
)
Condorcet consistency:
[5]:
table_cond = pd.DataFrame()
table_cond.index.name = 'Belief updating parameter'
for update_ratio_name, update_ratio in update_ratios.items():
results = monte_carlo_fictitious_play(
factory=rand_profile,
n_samples=N_SAMPLES,
n_max_episodes=N_MAX_EPISODES,
voting_rules=VOTING_RULES,
init='random_tau',
perception_update_ratio=update_ratio,
monte_carlo_settings=[
MCS_FREQUENCY_CW_WINS,
],
file_save='sav/perception_update_%s_with_CW.sav' % update_ratio_name,
)
for voting_rule in VOTING_RULES:
table_cond.loc[update_ratio_name, voting_rule] = float(results[voting_rule]['mean_frequency_cw_wins'])
table_cond
[5]:
Approval | Plurality | Anti-plurality | |
---|---|---|---|
Belief updating parameter | |||
1 | 0.999385 | 0.6616 | 0.547106 |
0.5 | 0.999765 | 0.6721 | 0.527511 |
one_over_log_log_t_plus_fourteen | 0.999898 | 0.6735 | 0.531112 |
one_over_log_t_plus_one | 0.999729 | 0.6700 | 0.492881 |
one_over_sqrt_t | 1.000000 | 0.6599 | 0.462096 |
one_over_t | 0.999500 | 0.6645 | 0.446902 |