Dynamic Process: Robustness to the Share of Updating Voters (with CW) (C.2)

[1]:
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from poisson_approval import *
[2]:
N_SAMPLES = 10000
N_MAX_EPISODES = 1000
[3]:
update_ratios = {
    '1': 1,
    '0.5': 0.5,
    'one_over_log_log_t_plus_fourteen': one_over_log_log_t_plus_fourteen,
    'one_over_log_t_plus_one': one_over_log_t_plus_one,
    'one_over_sqrt_t': one_over_sqrt_t,
    'one_over_t': one_over_t,
}
[4]:
rand_profile = RandConditional(
    RandProfileHistogramUniform(n_bins=1),
    test=is_condorcet, n_trials_max=None
)

Condorcet consistency:

[5]:
table_cond = pd.DataFrame()
table_cond.index.name = 'Share of updating voters'
for update_ratio_name, update_ratio in update_ratios.items():
    results = monte_carlo_fictitious_play(
        factory=rand_profile,
        n_samples=N_SAMPLES,
        n_max_episodes=N_MAX_EPISODES,
        voting_rules=VOTING_RULES,
        init='random_tau',
        ballot_update_ratio=update_ratio,
        monte_carlo_settings=[
            MCS_FREQUENCY_CW_WINS,
        ],
        file_save='sav/ballot_update_%s_with_CW.sav' % update_ratio_name,
    )
    for voting_rule in VOTING_RULES:
        table_cond.loc[update_ratio_name, voting_rule] = float(results[voting_rule]['mean_frequency_cw_wins'])
table_cond
[5]:
Approval Plurality Anti-plurality
Share of updating voters
1 0.997838 0.6670 0.102871
0.5 0.999552 0.6697 0.267519
one_over_log_log_t_plus_fourteen 0.999749 0.6730 0.257903
one_over_log_t_plus_one 0.999908 0.6628 0.496961
one_over_sqrt_t 0.999800 0.6697 0.570528
one_over_t 0.999700 0.6573 0.603082