- class svvamp.GeneratorProfileVMFHypercircle(n_v, n_c, vmf_concentration, vmf_probability=None, vmf_pole=None, sort_voters=False)[source]#
Profile generator using the Von Mises-Fisher distribution on the
n_c - 2
-sphere- Parameters:
n_v (int) – Number of voters.
n_c (int) – Number of candidates.
vmf_concentration (number or list or ndarray) – 1d array. Denote
k
its size (number of ‘groups’).vmf_concentration[i]
is the VMF concentration of groupi
.vmf_probability (number or list or ndarray) – 1d array of size
k
.vmf_probability[i]
is the probability, for a voter, to be in groupi
(up to normalization). IfNone
, then the groups have equal probabilities.vmf_pole (list or ndarray) – 2d array of size
(k, n_c)
.vmf_pole[i, :]
is the pole of the VMF distribution for groupi
.
Notes
We work on the
n_c - 2
-sphere: vectors of \(\mathbb{R}^n_c\) with Euclidean norm equal to 1 and that are orthogonal to [1, …, 1]. It is a representation of the classical Von Neumann-Morgenstern utility space. Cf. Durand et al., ‘Geometry on the Utility Sphere’.Before all computations, the poles are projected onto the hyperplane and normalized. So, the only source of concentration for group
i
isvmf_concentration[i]
, not the norm ofvmf_pole[i]
. Ifpole
is None, then each pole is drawn independently and uniformly on then_c - 2
-sphere.For each voter
c
, we draw a groupi
at random, according tovmf_probability
(normalized beforehand if necessary). Then,v
’s utility vector is drawn according to a Von Mises-Fisher distribution of polevmf_pole[i, :]
and concentrationvmf_concentration[i]
, using Ulrich’s method modified by Wood.Once group
i
is chosen, then up to a normalization constant, the density of probability for a unit vectorx
isexp(vmf_concentration[i] vmf.pole[i, :].x)
, wherevmf.pole[i, :].x
is a dot product.Examples
Typical usage:
>>> initialize_random_seeds() >>> generator = GeneratorProfileVMFHypercircle(n_v=5, n_c=3, vmf_concentration=10, sort_voters=True) >>> profile = generator() >>> profile.preferences_ut array([[ 0.67886167, -0.73231774, 0.05345607], [ 0.62834837, -0.76570906, 0.1373607 ], [ 0.71859954, -0.6950244 , -0.02357514], [ 0.49333272, -0.81010857, 0.31677584], [ 0.63042345, -0.76457205, 0.1341486 ]])
You can specify a pole:
>>> initialize_random_seeds() >>> generator = GeneratorProfileVMFHypercircle(n_v=5, n_c=3, vmf_concentration=10, vmf_pole=[.7, 0, -.7], ... sort_voters=True) >>> profile = generator() >>> profile.preferences_ut array([[ 0.8147627 , -0.36132374, -0.45343896], [ 0.44917711, 0.36590272, -0.81507983], [ 0.71021983, -0.00626776, -0.70395207], [ 0.68206757, 0.04766644, -0.72973402], [ 0.81591082, -0.38117577, -0.43473505]])
With several poles:
>>> initialize_random_seeds() >>> generator = GeneratorProfileVMFHypercircle(n_v=5, n_c=3, vmf_concentration=[np.inf, np.inf], ... vmf_probability=[.9, .1], sort_voters=True) >>> profile = generator() >>> profile.preferences_ut array([[ 1.19716876, 0.82383355, -2.02100232], [ 0.71640317, -0.64749197, -0.0689112 ], [ 0.71640317, -0.64749197, -0.0689112 ], [ 0.71640317, -0.64749197, -0.0689112 ], [ 0.71640317, -0.64749197, -0.0689112 ]])
If the probabilities are not explicitly given, poles have equal probabilities:
>>> initialize_random_seeds() >>> generator = GeneratorProfileVMFHypercircle(n_v=5, n_c=3, vmf_concentration=[np.inf, np.inf], ... sort_voters=True) >>> profile = generator() >>> profile.preferences_ut array([[ 1.19716876, 0.82383355, -2.02100232], [ 1.19716876, 0.82383355, -2.02100232], [ 1.19716876, 0.82383355, -2.02100232], [ 0.71640317, -0.64749197, -0.0689112 ], [ 0.71640317, -0.64749197, -0.0689112 ]])
References
Ulrich (1984) - Computer Generation of Distributions on the m-Sphere
Wood (1994) - Simulation of the von Mises Fisher distribution