- class svvamp.RuleRankedPairs(**kwargs)[source]#
Tideman’s Ranked Pairs.
Options#
>>> RuleRankedPairs.print_options_parameters() cm_option: ['lazy', 'exact']. Default: 'lazy'. icm_option: ['exact']. Default: 'exact'. iia_subset_maximum_size: is_number. Default: 2. im_option: ['lazy', 'exact']. Default: 'lazy'. tm_option: ['lazy', 'exact']. Default: 'exact'. um_option: ['lazy', 'exact']. Default: 'lazy'.
Notes
In the matrix of duels
matrix_duels_rk
, victories (and ties) are sorted by decreasing amplitude. If two duels have the same score, we take first the one where the winner has the smallest index; if there is still a choice to make, we take first the duel where the loser has the highest index.Starting with the largest victory, we build a directed graph whose nodes are the candidates and edges are victories. But if a victory creates a cycle in the graph, it is not validated and the edge is not added.
At the end, we have a transitive connected directed graph, whose adjacency relation is included in the relation of victories (with ties broken),
matrix_victories_rk_ctb
. The maximal node of this graph (by topological order) is declared the winner.This method meets the Condorcet criterion.
is_cm_()
: Deciding CM is NP-complete. Non-polynomial or non-exact algorithms from superclassRule
.is_icm_()
: Exact in polynomial time.is_im_()
: Deciding IM is NP-complete. Non-polynomial or non-exact algorithms from superclassRule
.is_iia_()
: Exact in polynomial time.is_tm_()
: Exact in polynomial time.is_um_()
: Non-polynomial or non-exact algorithms from superclassRule
.
References
‘Independence of clones as a criterion for voting rules’, Nicolaus Tideman, 1987.
‘Complexity of Unweighted Coalitional Manipulation under Some Common Voting Rules’, Lirong Xia et al., 2009.
‘Schulze and Ranked-Pairs Voting are Fixed-Parameter Tractable to Bribe, Manipulate, and Control’, Lane A. Hemaspaandra, Rahman Lavaee and Curtis Menton, 2012.
‘A Complexity-of-Strategic-Behavior Comparison between Schulze’s Rule and Ranked Pairs’, David Parkes and Lirong Xia, 2012.
Examples
>>> profile = Profile(preferences_ut=[ ... [ 0. , -0.5, -1. ], ... [ 1. , -1. , 0.5], ... [ 0.5, 0.5, -0.5], ... [ 0.5, 0. , 1. ], ... [-1. , -1. , 1. ], ... ], preferences_rk=[ ... [0, 1, 2], ... [0, 2, 1], ... [1, 0, 2], ... [2, 0, 1], ... [2, 1, 0], ... ]) >>> rule = RuleRankedPairs()(profile) >>> rule.meets_condorcet_c_rk_ctb True >>> rule.demo_results_(log_depth=0) ************************ * * * Election Results * * * ************************ *************** * Results * *************** profile_.preferences_ut (reminder) = [[ 0. -0.5 -1. ] [ 1. -1. 0.5] [ 0.5 0.5 -0.5] [ 0.5 0. 1. ] [-1. -1. 1. ]] profile_.preferences_rk (reminder) = [[0 1 2] [0 2 1] [1 0 2] [2 0 1] [2 1 0]] ballots = [[0 1 2] [0 2 1] [1 0 2] [2 0 1] [2 1 0]] scores = [[0. 3. 3.] [0. 0. 0.] [0. 3. 0.]] candidates_by_scores_best_to_worst [0, 2, 1] scores_best_to_worst [[0. 3. 3.] [0. 0. 3.] [0. 0. 0.]] w = 0 score_w = [0. 3. 3.] total_utility_w = 1.0 ********************************* * Condorcet efficiency (rk) * ********************************* w (reminder) = 0 condorcet_winner_rk_ctb = 0 w_is_condorcet_winner_rk_ctb = True w_is_not_condorcet_winner_rk_ctb = False w_missed_condorcet_winner_rk_ctb = False condorcet_winner_rk = 0 w_is_condorcet_winner_rk = True w_is_not_condorcet_winner_rk = False w_missed_condorcet_winner_rk = False *************************************** * Condorcet efficiency (relative) * *************************************** w (reminder) = 0 condorcet_winner_ut_rel_ctb = 0 w_is_condorcet_winner_ut_rel_ctb = True w_is_not_condorcet_winner_ut_rel_ctb = False w_missed_condorcet_winner_ut_rel_ctb = False condorcet_winner_ut_rel = 0 w_is_condorcet_winner_ut_rel = True w_is_not_condorcet_winner_ut_rel = False w_missed_condorcet_winner_ut_rel = False *************************************** * Condorcet efficiency (absolute) * *************************************** w (reminder) = 0 condorcet_admissible_candidates = [ True False False] w_is_condorcet_admissible = True w_is_not_condorcet_admissible = False w_missed_condorcet_admissible = False weak_condorcet_winners = [ True False False] w_is_weak_condorcet_winner = True w_is_not_weak_condorcet_winner = False w_missed_weak_condorcet_winner = False condorcet_winner_ut_abs_ctb = 0 w_is_condorcet_winner_ut_abs_ctb = True w_is_not_condorcet_winner_ut_abs_ctb = False w_missed_condorcet_winner_ut_abs_ctb = False condorcet_winner_ut_abs = 0 w_is_condorcet_winner_ut_abs = True w_is_not_condorcet_winner_ut_abs = False w_missed_condorcet_winner_ut_abs = False resistant_condorcet_winner = nan w_is_resistant_condorcet_winner = False w_is_not_resistant_condorcet_winner = True w_missed_resistant_condorcet_winner = False >>> rule.demo_manipulation_(log_depth=0) ***************************** * * * Election Manipulation * * * ***************************** ********************************************* * Basic properties of the voting system * ********************************************* with_two_candidates_reduces_to_plurality = True is_based_on_rk = True is_based_on_ut_minus1_1 = False meets_iia = False **************************************************** * Manipulation properties of the voting system * **************************************************** Condorcet_c_ut_rel_ctb (False) ==> Condorcet_c_ut_rel (False) || || || Condorcet_c_rk_ctb (True) ==> Condorcet_c_rk (True) || || || || || || || V V || || V V Condorcet_c_ut_abs_ctb (True) ==> Condorcet_ut_abs_c (True) || || || || || V V || || maj_fav_c_rk_ctb (True) ==> maj_fav_c_rk (True) || || || || || V V V V majority_favorite_c_ut_ctb (True) ==> majority_favorite_c_ut (True) || || V V IgnMC_c_ctb (True) ==> IgnMC_c (True) || || V V InfMC_c_ctb (True) ==> InfMC_c (True) ***************************************************** * Independence of Irrelevant Alternatives (IIA) * ***************************************************** w (reminder) = 0 is_iia = True log_iia: iia_subset_maximum_size = 2.0 example_winner_iia = nan example_subset_iia = nan ********************** * c-Manipulators * ********************** w (reminder) = 0 preferences_ut (reminder) = [[ 0. -0.5 -1. ] [ 1. -1. 0.5] [ 0.5 0.5 -0.5] [ 0.5 0. 1. ] [-1. -1. 1. ]] v_wants_to_help_c = [[False False False] [False False False] [False False False] [False False True] [False False True]] ************************************ * Individual Manipulation (IM) * ************************************ is_im = nan log_im: im_option = lazy candidates_im = [ 0. 0. nan] ********************************* * Trivial Manipulation (TM) * ********************************* is_tm = False log_tm: tm_option = exact candidates_tm = [0. 0. 0.] ******************************** * Unison Manipulation (UM) * ******************************** is_um = nan log_um: um_option = lazy candidates_um = [ 0. 0. nan] ********************************************* * Ignorant-Coalition Manipulation (ICM) * ********************************************* is_icm = False log_icm: icm_option = exact candidates_icm = [0. 0. 0.] necessary_coalition_size_icm = [0. 6. 4.] sufficient_coalition_size_icm = [0. 6. 4.] *********************************** * Coalition Manipulation (CM) * *********************************** is_cm = False log_cm: cm_option = lazy, um_option = lazy, tm_option = exact candidates_cm = [0. 0. 0.] necessary_coalition_size_cm = [0. 2. 3.] sufficient_coalition_size_cm = [0. 2. 3.]
- property candidates_by_scores_best_to_worst_#
1d array of integers.
candidates_by_scores_best_to_worst[k]
is thek
-th candidate by topological order on the graph generated by Ranked Pairs.
- property scores_#
2d array of integers.
scores[c, d]
is equal tomatrix_duels_rk
[c, d]
iff this duel was validated in Ranked Pairs, 0 otherwise.Note
Unlike for most other voting systems,
scores
matrix must be read in rows, in order to comply with our convention for the matrix of duels:c
’s score vector isscores[c, :]
.
- property scores_best_to_worst_#
2d array.
scores_best_to_worst_
is the scores of the candidates, from the winner to the last candidate of the election.scores_best_to_worst[k, j]
is the score of thek
-th best candidate of the election against thej
-th. It is the result inmatrix_duels_rk
if this duels was validated by Ranked Pairs, 0 otherwise.