- class svvamp.RuleICRV(**kwargs)[source]#
Instant-Condorcet Runoff Voting (ICRV), also known as Benham rule.
Options#
>>> RuleICRV.print_options_parameters() cm_option: ['fast', 'slow', 'very_slow', 'exact']. Default: 'fast'. icm_option: ['exact']. Default: 'exact'. iia_subset_maximum_size: is_number. Default: 2. im_option: ['lazy', 'exact']. Default: 'lazy'. tm_option: ['lazy', 'exact']. Default: 'exact'. um_option: ['lazy', 'exact']. Default: 'lazy'.
Notes
Principle: eliminate candidates as in IRV; stop as soon as there is a Condorcet winner.
Even round
r
(including round 0): if a candidatew
has only victories against all other non-eliminated candidates (i.e. is a Condorcet winner in this subset, in the sense ofmatrix_victories_rk
), thenw
is declared the winner.Odd round
r
: the candidate who is ranked first (among non-eliminated candidates) by least voters is eliminated, like inRuleIRV
.
This method meets the Condorcet criterion.
is_cm_()
:cm_option
='fast'
: Rely onRuleIRV
’s fast algorithm. Polynomial heuristic. Can prove CM but unable to decide non-CM (except in rare obvious cases).cm_option
='slow'
: Rely onRuleExhaustiveBallot
’s exact algorithm. Non-polynomial heuristic (\(2^{n_c}\)). Quite efficient to prove CM or non-CM.cm_option
='very_slow'
: Rely onRuleIRV
’s exact algorithm. Non-polynomial heuristic (\(n_c!\)). Very efficient to prove CM or non-CM.cm_option
='exact'
: Non-polynomial algorithm from superclassRule
.
Each algorithm above exploits the faster ones. For example, if
cm_option
='very_slow'
, SVVAMP tries the fast algorithm first, then the slow one, then the ‘very slow’ one. As soon as it reaches a decision, computation stops.is_icm_()
: Exact in polynomial time.is_im_()
: Non-polynomial or non-exact algorithms from superclassRule
.not_iia()
: Exact in polynomial time.is_tm_()
: Exact in polynomial time.is_um_()
: Non-polynomial or non-exact algorithms from superclassRule
.
References
‘Four Condorcet-Hare Hybrid Methods for Single-Winner Elections’, James Green-Armytage, 2011.
Examples
>>> profile = Profile(preferences_ut=[ ... [ 0. , -0.5, -1. ], ... [ 1. , -1. , 0.5], ... [ 0.5, 0.5, -0.5], ... [ 0.5, 0. , 1. ], ... [-1. , -1. , 1. ], ... ], preferences_rk=[ ... [0, 1, 2], ... [0, 2, 1], ... [1, 0, 2], ... [2, 0, 1], ... [2, 1, 0], ... ]) >>> rule = RuleICRV()(profile) >>> rule.demo_results_(log_depth=0) ************************ * * * Election Results * * * ************************ *************** * Results * *************** profile_.preferences_ut (reminder) = [[ 0. -0.5 -1. ] [ 1. -1. 0.5] [ 0.5 0.5 -0.5] [ 0.5 0. 1. ] [-1. -1. 1. ]] profile_.preferences_rk (reminder) = [[0 1 2] [0 2 1] [1 0 2] [2 0 1] [2 1 0]] ballots = [[0 1 2] [0 2 1] [1 0 2] [2 0 1] [2 1 0]] scores = [[2. 0. 1.]] candidates_by_scores_best_to_worst [0 2 1] scores_best_to_worst [[2. 1. 0.]] w = 0 score_w = [2.] total_utility_w = 1.0 ********************************* * Condorcet efficiency (rk) * ********************************* w (reminder) = 0 condorcet_winner_rk_ctb = 0 w_is_condorcet_winner_rk_ctb = True w_is_not_condorcet_winner_rk_ctb = False w_missed_condorcet_winner_rk_ctb = False condorcet_winner_rk = 0 w_is_condorcet_winner_rk = True w_is_not_condorcet_winner_rk = False w_missed_condorcet_winner_rk = False *************************************** * Condorcet efficiency (relative) * *************************************** w (reminder) = 0 condorcet_winner_ut_rel_ctb = 0 w_is_condorcet_winner_ut_rel_ctb = True w_is_not_condorcet_winner_ut_rel_ctb = False w_missed_condorcet_winner_ut_rel_ctb = False condorcet_winner_ut_rel = 0 w_is_condorcet_winner_ut_rel = True w_is_not_condorcet_winner_ut_rel = False w_missed_condorcet_winner_ut_rel = False *************************************** * Condorcet efficiency (absolute) * *************************************** w (reminder) = 0 condorcet_admissible_candidates = [ True False False] w_is_condorcet_admissible = True w_is_not_condorcet_admissible = False w_missed_condorcet_admissible = False weak_condorcet_winners = [ True False False] w_is_weak_condorcet_winner = True w_is_not_weak_condorcet_winner = False w_missed_weak_condorcet_winner = False condorcet_winner_ut_abs_ctb = 0 w_is_condorcet_winner_ut_abs_ctb = True w_is_not_condorcet_winner_ut_abs_ctb = False w_missed_condorcet_winner_ut_abs_ctb = False condorcet_winner_ut_abs = 0 w_is_condorcet_winner_ut_abs = True w_is_not_condorcet_winner_ut_abs = False w_missed_condorcet_winner_ut_abs = False resistant_condorcet_winner = nan w_is_resistant_condorcet_winner = False w_is_not_resistant_condorcet_winner = True w_missed_resistant_condorcet_winner = False >>> rule.demo_manipulation_(log_depth=0) ***************************** * * * Election Manipulation * * * ***************************** ********************************************* * Basic properties of the voting system * ********************************************* with_two_candidates_reduces_to_plurality = True is_based_on_rk = True is_based_on_ut_minus1_1 = False meets_iia = False **************************************************** * Manipulation properties of the voting system * **************************************************** Condorcet_c_ut_rel_ctb (False) ==> Condorcet_c_ut_rel (False) || || || Condorcet_c_rk_ctb (False) ==> Condorcet_c_rk (True) || || || || || || || V V || || V V Condorcet_c_ut_abs_ctb (False) ==> Condorcet_ut_abs_c (True) || || || || || V V || || maj_fav_c_rk_ctb (True) ==> maj_fav_c_rk (True) || || || || || V V V V majority_favorite_c_ut_ctb (True) ==> majority_favorite_c_ut (True) || || V V IgnMC_c_ctb (True) ==> IgnMC_c (True) || || V V InfMC_c_ctb (True) ==> InfMC_c (True) ***************************************************** * Independence of Irrelevant Alternatives (IIA) * ***************************************************** w (reminder) = 0 is_iia = True log_iia: iia_subset_maximum_size = 2.0 example_winner_iia = nan example_subset_iia = nan ********************** * c-Manipulators * ********************** w (reminder) = 0 preferences_ut (reminder) = [[ 0. -0.5 -1. ] [ 1. -1. 0.5] [ 0.5 0.5 -0.5] [ 0.5 0. 1. ] [-1. -1. 1. ]] v_wants_to_help_c = [[False False False] [False False False] [False False False] [False False True] [False False True]] ************************************ * Individual Manipulation (IM) * ************************************ is_im = nan log_im: im_option = lazy candidates_im = [ 0. 0. nan] ********************************* * Trivial Manipulation (TM) * ********************************* is_tm = False log_tm: tm_option = exact candidates_tm = [0. 0. 0.] ******************************** * Unison Manipulation (UM) * ******************************** is_um = nan log_um: um_option = lazy candidates_um = [ 0. 0. nan] ********************************************* * Ignorant-Coalition Manipulation (ICM) * ********************************************* is_icm = False log_icm: icm_option = exact candidates_icm = [0. 0. 0.] necessary_coalition_size_icm = [0. 6. 4.] sufficient_coalition_size_icm = [0. 6. 4.] *********************************** * Coalition Manipulation (CM) * *********************************** is_cm = nan log_cm: cm_option = fast, um_option = lazy, tm_option = exact candidates_cm = [ 0. 0. nan] necessary_coalition_size_cm = [0. 1. 2.] sufficient_coalition_size_cm = [0. 2. 4.]
- property candidates_by_scores_best_to_worst_#
1d array of integers.
Candidates that are not eliminated at the moment a Condorcet winner is detected are sorted by their number of victories in
matrix_victories_rk
(restricted to candidates that are not eliminated at that time).Other candidates are sorted in the reverse order of their IRV elimination.
- property scores_#
2d array.
For even rounds
r
(including round 0),scores[r, c]
is the number of victories forc
inmatrix_victories_rk
(restricted to non-eliminated candidates). Ties count for 0.5.For odd rounds
r
,scores[r, c]
is the number of voters who rankc
first (among non-eliminated candidates).Examples
>>> profile = Profile(preferences_rk=[ ... [0, 1, 2, 3], ... [1, 2, 0, 3], ... [2, 0, 1, 3], ... ]) >>> rule = RuleICRV()(profile) >>> rule.scores_ array([[ 2., 2., 2., 0.], [ 1., 1., 1., 0.], [ 1., 1., 1., nan], [ 1., 1., 1., nan], [ 1., 0., nan, nan]])