- class svvamp.RuleMaximin(**kwargs)[source]#
- Maximin method. - Options#- >>> RuleMaximin.print_options_parameters() cm_option: ['faster', 'fast', 'exact']. Default: 'fast'. icm_option: ['exact']. Default: 'exact'. iia_subset_maximum_size: is_number. Default: 2. im_option: ['exact']. Default: 'exact'. precheck_heuristic: is_bool. Default: True. tm_option: ['exact']. Default: 'exact'. um_option: ['exact']. Default: 'exact'. - Notes - Candidate - c’s score is the minimum of the row- matrix_duels_rk- [c, :](except the diagonal term), i.e. the result of candidate- cfor her worst duel. The candidate with highest score is declared the winner. In case of a tie, the candidate with lowest index wins.- This method meets the Condorcet criterion. - is_cm_(): Deciding CM is NP-complete, even for 2 manipulators.- cm_option=- 'faster': Zuckerman et al. (2011) (cf. below). The difference with option- fastis that, if CM is proven possible or impossible, we optimize the bounds only based on UM, and not on CM. Hence this option is as precise as- fastto compute- is_cm_, but less precise for the bounds- necessary_coalition_size_cm_and- sufficient_coalition_size_cm_.
- cm_option=- 'fast': Zuckerman et al. (2011). This approximation algorithm is polynomial and has a multiplicative factor of error of 5/3 on the number of manipulators needed.
- cm_option=- 'exact': Non-polynomial algorithm from superclass- Rule.
 
- is_icm_(): Exact in polynomial time.
- is_im_(): Exact in polynomial time.
- is_iia_(): Exact in polynomial time.
- is_tm_(): Exact in polynomial time.
- is_um_(): Exact in polynomial time.
 - References - ‘Complexity of Unweighted Coalitional Manipulation under Some Common Voting Rules’, Lirong Xia et al., 2009. - ‘An algorithm for the coalitional manipulation problem under Maximin’, Michael Zuckerman, Omer Lev and Jeffrey S. Rosenschein, 2011. - Examples - >>> profile = Profile(preferences_ut=[ ... [ 0. , -0.5, -1. ], ... [ 1. , -1. , 0.5], ... [ 0.5, 0.5, -0.5], ... [ 0.5, 0. , 1. ], ... [-1. , -1. , 1. ], ... ], preferences_rk=[ ... [0, 1, 2], ... [0, 2, 1], ... [1, 0, 2], ... [2, 0, 1], ... [2, 1, 0], ... ]) >>> rule = RuleMaximin()(profile) >>> rule.demo_results_(log_depth=0) ************************ * * * Election Results * * * ************************ *************** * Results * *************** profile_.preferences_ut (reminder) = [[ 0. -0.5 -1. ] [ 1. -1. 0.5] [ 0.5 0.5 -0.5] [ 0.5 0. 1. ] [-1. -1. 1. ]] profile_.preferences_rk (reminder) = [[0 1 2] [0 2 1] [1 0 2] [2 0 1] [2 1 0]] ballots = [[0 1 2] [0 2 1] [1 0 2] [2 0 1] [2 1 0]] scores = [3 2 2] candidates_by_scores_best_to_worst [0 1 2] scores_best_to_worst [3 2 2] w = 0 score_w = 3 total_utility_w = 1.0 ********************************* * Condorcet efficiency (rk) * ********************************* w (reminder) = 0 condorcet_winner_rk_ctb = 0 w_is_condorcet_winner_rk_ctb = True w_is_not_condorcet_winner_rk_ctb = False w_missed_condorcet_winner_rk_ctb = False condorcet_winner_rk = 0 w_is_condorcet_winner_rk = True w_is_not_condorcet_winner_rk = False w_missed_condorcet_winner_rk = False *************************************** * Condorcet efficiency (relative) * *************************************** w (reminder) = 0 condorcet_winner_ut_rel_ctb = 0 w_is_condorcet_winner_ut_rel_ctb = True w_is_not_condorcet_winner_ut_rel_ctb = False w_missed_condorcet_winner_ut_rel_ctb = False condorcet_winner_ut_rel = 0 w_is_condorcet_winner_ut_rel = True w_is_not_condorcet_winner_ut_rel = False w_missed_condorcet_winner_ut_rel = False *************************************** * Condorcet efficiency (absolute) * *************************************** w (reminder) = 0 condorcet_admissible_candidates = [ True False False] w_is_condorcet_admissible = True w_is_not_condorcet_admissible = False w_missed_condorcet_admissible = False weak_condorcet_winners = [ True False False] w_is_weak_condorcet_winner = True w_is_not_weak_condorcet_winner = False w_missed_weak_condorcet_winner = False condorcet_winner_ut_abs_ctb = 0 w_is_condorcet_winner_ut_abs_ctb = True w_is_not_condorcet_winner_ut_abs_ctb = False w_missed_condorcet_winner_ut_abs_ctb = False condorcet_winner_ut_abs = 0 w_is_condorcet_winner_ut_abs = True w_is_not_condorcet_winner_ut_abs = False w_missed_condorcet_winner_ut_abs = False resistant_condorcet_winner = nan w_is_resistant_condorcet_winner = False w_is_not_resistant_condorcet_winner = True w_missed_resistant_condorcet_winner = False >>> rule.demo_manipulation_(log_depth=0) ***************************** * * * Election Manipulation * * * ***************************** ********************************************* * Basic properties of the voting system * ********************************************* with_two_candidates_reduces_to_plurality = True is_based_on_rk = True is_based_on_ut_minus1_1 = False meets_iia = False **************************************************** * Manipulation properties of the voting system * **************************************************** Condorcet_c_ut_rel_ctb (False) ==> Condorcet_c_ut_rel (False) || || || Condorcet_c_rk_ctb (True) ==> Condorcet_c_rk (True) || || || || || || || V V || || V V Condorcet_c_ut_abs_ctb (True) ==> Condorcet_ut_abs_c (True) || || || || || V V || || maj_fav_c_rk_ctb (True) ==> maj_fav_c_rk (True) || || || || || V V V V majority_favorite_c_ut_ctb (True) ==> majority_favorite_c_ut (True) || || V V IgnMC_c_ctb (True) ==> IgnMC_c (True) || || V V InfMC_c_ctb (True) ==> InfMC_c (True) ***************************************************** * Independence of Irrelevant Alternatives (IIA) * ***************************************************** w (reminder) = 0 is_iia = True log_iia: iia_subset_maximum_size = 2.0 example_winner_iia = nan example_subset_iia = nan ********************** * c-Manipulators * ********************** w (reminder) = 0 preferences_ut (reminder) = [[ 0. -0.5 -1. ] [ 1. -1. 0.5] [ 0.5 0.5 -0.5] [ 0.5 0. 1. ] [-1. -1. 1. ]] v_wants_to_help_c = [[False False False] [False False False] [False False False] [False False True] [False False True]] ************************************ * Individual Manipulation (IM) * ************************************ is_im = False log_im: im_option = exact candidates_im = [0. 0. 0.] ********************************* * Trivial Manipulation (TM) * ********************************* is_tm = False log_tm: tm_option = exact candidates_tm = [0. 0. 0.] ******************************** * Unison Manipulation (UM) * ******************************** is_um = False log_um: um_option = exact candidates_um = [0. 0. 0.] ********************************************* * Ignorant-Coalition Manipulation (ICM) * ********************************************* is_icm = False log_icm: icm_option = exact candidates_icm = [0. 0. 0.] necessary_coalition_size_icm = [0. 6. 4.] sufficient_coalition_size_icm = [0. 6. 4.] *********************************** * Coalition Manipulation (CM) * *********************************** is_cm = False log_cm: cm_option = fast, um_option = exact, tm_option = exact candidates_cm = [0. 0. 0.] necessary_coalition_size_cm = [0. 2. 3.] sufficient_coalition_size_cm = [0. 2. 3.] - property scores_#
- 1d array of integers. - scores[c]is the minimum of the row- matrix_duels_rk- [c, :](except the diagonal term), i.e. the result of candidate- cfor her worst duel.